Preparation of nanoporous SiO2/C derived from rice husk as anode material in SiO2/C||LiFePO4 full-cell through alkaline activation treatment

Thanh Liem Pham, Huu Phuoc Le, My Loan Phung Le, Tan Phat Vu and Van Man Tran

Silicon-based materials such as pure silicon (Si), silicon monoxide (SiO), silica (SiO2), are considered promising anode for future high power energy Li-ion batteries. Among them, SiO2 has garnered attention owing to its outstanding features such as high theoretical capacity (1961 mAh g−1), abundant reserve, and low-cost processing. However, the large expansion and shrinkage of the Si and SiO2 volume during lithiation/delithiation reaction are still the main barriers for practical application. In this study, SiO2 derived from rice husks and activated by KOH displayed a nanoporous structure with a porous matrix carbon that can absorb the volume expansion during lithiation process and facilitate the diffusion of Li+ ion along the pores to minimise the dendrite growth at the local area. Through activation treatment, the surface area of SiO2 increases up to 278.875 mg−1 with a pore volume of 0.191 cmg−1 and the average pore diameter is about 0.771 nm. The cycling results showed that rice husk ash mixed with KOH at a ratio of 1:0.5 offered the best capacity retention of SiO2/C anode material in half-cell. In full-cell configuration of SiO2/C||LiFePO4, the the negative electrode/positive electrode capacity ratio (N/P) ratio of 1.2 exhibited the most stable performance with the highest capacity retention.


Online
What do you need help with?
Lorem Ipsum is simply dummy text of the printing and typesetting industry
Lorem Ipsum is simply dummy text of the printing and typesetting industry
Lorem Ipsum is simply dummy text of the printing and typesetting industry
Lorem Ipsum is simply dummy text of the printing and typesetting industry